Планирование экспериментальных исследований. Виды опросных методов. Планирование эксперимента Когда возникло планирование эксперимента

4.7. Экспериментальные планы

Экспериментальный план – это тактика экспериментального исследования, воплощенная в конкретной системе операций планирования эксперимента. Основными критериями классификации планов являются:

Состав участников (индивид или группа);

Количество независимых переменных и их уровней;

Виды шкал представления независимых переменных;

Метод сбора экспериментальных данных;

Место и условия проведения эксперимента;

Особенности организации экспериментального воздействия и способа контроля.

Планы для групп испытуемых и для одного испытуемого. Все экспериментальные планы можно разделить по составу участников на планы для групп испытуемых и планы для одного испытуемого.

Эксперименты с группой испытуемых имеют следующие преимущества: возможность обобщения результатов эксперимента на популяцию; возможность использования схем межгрупповых сравнений; экономия времени; применение методов статистического анализа. К недостаткам данного типа экспериментальных планов можно отнести: влияние индивидуальных различий между людьми на результаты эксперимента; проблему репрезентативности экспериментальной выборки; проблему эквивалентности групп испытуемых.

Эксперименты с одним испытуемым – это частный случай «планов с маленьким N». Дж. Гудвин указывает на следующие причины использования таких планов: потребности в индивидуальной валидности, так как в экспериментах с большим N возникает проблема, когда обобщенные данные не характеризуют ни одного испытуемого. Эксперимент с одним испытуемым проводится также в уникальных случаях, когда в силу ряда причин невозможно привлечь много участников. В этих случаях целью эксперимента является анализ уникальных явлений и индивидуальных характеристик.

Эксперимент с маленьким N, по мнению Д. Мартина, имеет следующие преимущества: отсутствие сложных статистических подсчетов, легкость в интерпретации результатов, возможность изучения уникальных случаев, привлечение одного-двух участников, широкие возможности манипуляции независимыми переменными. Ему свойственны и некоторые недостатки, в частности сложность процедур контроля, затруднение при обобщении результатов; относительная неэкономичность по времени.

Рассмотрим планы для одного испытуемого.

Планирование временных серий. Основным показателем влияния независимой переменной на зависимую при реализации такого плана является изменение характера ответов испытуемого во времени. Простейшая стратегия: схема А – В. Испытуемый первоначально выполняет деятельность в условиях А, а затем в условиях В. Для контроля «эффекта плацебо» применяется схема: А – В – А. («Эффект плацебо» – это реакции испытуемых на «пустые» воздействия, соответствующие реакциям на реальные воздействия.) В данном случае испытуемый не должен заранее знать, какое из условий является «пустым», а какое реальным. Однако эти схемы не учитывают взаимодействия воздействий, поэтому при планировании временных серий, как правило, применяют схемы регулярного чередования (А – В – А – В), позиционного уравнивания (А – В – В – А) или случайного чередования. Применение более «длинных» временных серий увеличивает возможность обнаружения эффекта, но приводит к ряду негативных последствий – утомлению испытуемого, снижению контроля за другими дополнительными переменными и т. п.

План альтернативных воздействий является развитием плана временных серий. Его специфика заключается в том, что воздействия А и В рандомизированно распределяются во времени и предъявляются испытуемому раздельно. Затем сравниваются эффекты от каждого из воздействий.

Реверсивный план применяется для изучения двух альтернативных форм поведения. Первоначально регистрируется базовый уровень проявления обеих форм поведения. Затем предъявляется комплексное воздействие, состоящее из специфического компонента для первой формы поведения и дополнительного для второй. Через определенное время сочетание воздействий видоизменяют. Эффект двух комплексных воздействий оценивается.

План возрастания критериев часто используется в психологии обучения. Суть его состоит в том, что регистрируется изменение поведения испытуемого в ответ на прирост воздействия. При этом следующее воздействие предъявляется лишь после выхода испытуемого на заданный уровень критерия.

При проведении экспериментов с одним испытуемым следует учитывать, что основные артефакты практически неустранимы. Кроме того, в этом случае, как ни в каком другом, проявляется влияние установок экспериментатора и отношений, которые складываются между ним и испытуемым.

Р. Готтсданкер предлагает различать качественные и количественные экспериментальные планы . В качественных планах независимая переменная представлена в номинативной шкале, т. е. в эксперименте используются два или более качественно разных условия.

В количественных экспериментальных планах уровни независимой переменной представлены в интервальных, ранговых или пропорциональных шкалах, т. е. в эксперименте используются уровни выраженности того или иного условия.

Возможна ситуация, когда в факторном эксперименте одна переменная будет представлена в количественном, а другая – в качественном виде. В таком случае план будет комбинированным.

Внутригрупповые и межгрупповые экспериментальные планы. Т.В. Корнилова определяет два типа экспериментальных планов по критерию количества групп и условий проведения эксперимента: внутригрупповые и межгрупповые. К внутригрупповым относятся планы, в которых влияние вариантов независимой переменной и измерение экспериментального эффекта происходят в одной группе. В межгрупповых планах влияние вариантов независимой переменной осуществляется в разных экспериментальных группах.

Преимуществами внутригруппового плана являются: меньшее количество участников, устранение факторов индивидуальных отличий, уменьшение общего времени проведения эксперимента, возможность доказательства статистической значимости экспериментального эффекта. К недостаткам относятся неконстантность условий и проявление «эффекта последовательности».

Преимуществами межгруппового плана являются: отсутствие «эффекта последовательности», возможность получения большего количества данных, сокращение времени участия в эксперименте для каждого испытуемого, уменьшение эффекта выбывания участников эксперимента. Главным недостатком межгруппового плана является неэквивалентность групп.

Планы с одной независимой переменной и факторные планы. По критерию количества экспериментальных воздействий Д. Мартин предлагает различать планы с одной независимой переменной, факторные планы и планы с серией экспериментов. В планах с одной независимой переменной экспериментатор манипулирует одной независимой переменной, которая может иметь неограниченное количество вариантов проявления. В факторных планах (подробно о них см. с. 120) экспериментатор манипулирует двумя и более независимыми переменными, исследует все возможные варианты взаимодействия их разных уровней.

Планы с серией экспериментов проводятся для постепенного исключения конкурирующих гипотез. В конце серии экспериментатор приходит к верификации одной гипотезы.

Доэкспериментальные, квазиэкспериментальные планы и планы истинных экспериментов. Д. Кэмпбелл предложил разделить все экспериментальные планы для групп испытуемых на следующие группы: доэкспериментальные, квазиэкспериментальные и планы истинных экспериментов. В основе этого деления лежит близость реального эксперимента к идеальному. Чем меньше артефактов провоцирует тот или иной план и чем строже контроль дополнительных переменных, тем ближе эксперимент к идеальному. Доэкспериментальные планы менее всего учитывают требования, предъявляемые к идеальному эксперименту. В.Н. Дружинин указывает, что они могут служить лишь иллюстрацией, в практике научных исследований их следует по возможности избегать. Квазиэкспериментальные планы являются попыткой учета реалий жизни при проведении эмпирических исследований, они специально создаются с отступлением от схем истинных экспериментов. Исследователь должен осознавать источники артефактов – внешних дополнительных переменных, которые он не может контролировать. Квазиэкспериментальный план применяется тогда, когда применение лучшего плана невозможно.

Систематизированные признаки доэкспериментальных, квазиэкспериментальных планов и планов истинных экспериментов приводятся в нижеследующей таблице.

При описании экспериментальных планов будем пользоваться символизацией, предложенной Д. Кэмпбеллом: R – рандомизация; X – экспериментальное воздействие; O – тестирование.

К доэксперименталъным планам относятся: 1) исследование единичного случая; 2) план с предварительным и итоговым тестированием одной группы; 3) сравнение статистических групп.

При исследовании единичного случая однократно тестируется одна группа после экспериментального воздействия. Схематично этот план можно записать в виде:

Контроль внешних переменных и независимой переменной полностью отсутствует. В таком эксперименте нет никакого материала для сравнения. Результаты могут быть сопоставлены лишь с обыденными представлениями о реальности, научной информации они не несут.

План с предварительным и итоговым тестированием одной группы часто применяется в социологических, социально-психологических и педагогических исследованиях. Его можно записать в виде:

В этом плане отсутствует контрольная группа, поэтому нельзя утверждать, что изменения зависимой переменной (разница между O1 и O2), регистрируемые в ходе тестирования, вызваны именно изменением независимой переменной. Между начальным и итоговым тестированием могут произойти и другие «фоновые» события, воздействующие на испытуемых вместе с независимой переменной. Этот план не позволяет контролировать также эффект естественного развития и эффект тестирования.

Сравнение статистических групп будет точнее назвать планом для двух неэквивалентных групп с тестированием после воздействия. Он может быть записан в таком виде:

Этот план позволяет учитывать эффект тестирования, благодаря введению контрольной группы контролировать ряд внешних переменных. Однако с его помощью невозможно учесть эффект естественного развития, так как нет материала для сравнения состояния испытуемых на данный момент с их начальным состоянием (предварительное тестирование не проводилось). Для сравнения результатов контрольной и экспериментальной групп используют t-критерий Стьюдента. Однако следует учитывать, что различия в результатах тестирования могут быть обусловлены не экспериментальным воздействием, а различием в составе групп.

Квазиэкспериментальные планы являются своеобразным компромиссом между реальностью и строгими рамками истинных экспериментов. Существуют следующие типы квазиэкспериментальных планов в психологическом исследовании: 1) планы экспериментов для неэквивалентных групп; 2) планы с предварительным и итоговым тестированием различных рандомизированных групп; 3) планы дискретных временных серий.

План эксперимента для неэквивалентных групп направлен на установление причинно-следственной зависимости между переменными, однако в нем отсутствует процедура уравнивания групп (рандомизация). Этот план может быть представлен следующей схемой:

К проведению эксперимента в данном случае привлекаются две реальные группы. Обе группы тестируются. Затем одна группа подвергается экспериментальному воздействию, а другая – нет. Затем обе группы повторно тестируются. Результаты первого и второго тестирования обеих групп сопоставляют, для сравнения используют t-критерий Стьюдента и дисперсионный анализ. Различие O2 и O4 свидетельствует о естественном развитии и фоновом воздействии. Для выявления действия независимой переменной необходимо сравнивать 6(O1 O2) и 6(O3 O4), т. е. величины сдвигов показателей. Значимость различия приростов показателей будет свидетельствовать о влиянии независимой переменной на зависимую. Этот план аналогичен плану истинного эксперимента для двух групп с тестированием до и после воздействия (см. с. 118). Главным источником артефактов является различие в составе групп.

План с предварительным и итоговым тестированием различных рандомизированных групп отличается от плана истинного эксперимента тем, что предварительное тестирование проходит одна группа, а итоговое – эквивалентная группа, которая подверглась воздействию:

Главный недостаток этого квазиэкспериментального плана – невозможность контролировать эффект «фона» – влияние событий, происходящих наряду с экспериментальным воздействием в период между первым и вторым тестированием.

Планы дискретных временных серий подразделяются на несколько видов в зависимости от количества групп (одной или нескольких), а также в зависимости от количества экспериментальных воздействий (одиночного или серии воздействий).

План дискретных временных серий для одной группы испытуемых состоит в том, что первоначально определяется исходный уровень зависимой переменной на группе испытуемых с помощью серии последовательных замеров. Затем применяют экспериментальное воздействие и проводят серию аналогичных замеров. Сравнивают уровни зависимой переменной до и после воздействия. Схема этого плана:

Главный недостаток плана дискретных временных серий в том, что он не дает возможности отделить результат влияния независимой переменной от влияния фоновых событий, которые происходят в течение исследования.

Модификацией этого плана является квазиэксперимент по схеме временных серий, в котором воздействие перед замером чередуется с отсутствием воздействия перед замером. Его схема такова:

ХO1 – O2ХO3 – O4 ХO5

Чередование может быть регулярным или случайным. Этот вариант подходит лишь в том случае, когда эффект воздействия обратим. При обработке данных, полученных в эксперименте, серии разбивают на две последовательности и сравнивают результаты замеров, где было воздействие, с результатами замеров, где оно отсутствовало. Для сравнения данных используется t-критерий Стьюдента с числом степеней свободы n – 2, где n – число ситуаций одного типа.

Планы временных серий часто реализуются на практике. Однако при их применении нередко наблюдается так называемый «эффект Хотторна». Впервые его обнаружили американские ученые в 1939 г., когда проводили исследование на заводе Хотторна в Чикаго. Предполагалось, что изменение системы организации труда позволит повысить его производительность. Однако в ходе эксперимента любые изменения в организации труда приводили к повышению его производительности. В результате оказалось, что само по себе участие в эксперименте повысило мотивацию к труду. Испытуемые поняли, что ими лично интересуются, и стали работать продуктивнее. Чтобы контролировать этот эффект, должна использоваться контрольная группа.

Схема плана временных серий для двух неэквивалентных групп, из которых одна не получает воздействия, выглядит так:

O1O2O3O4O5O6O7O8O9O10

O1O2O3O4O5O6O7O8O9O10

Такой план позволяет контролировать эффект «фона». Обычно он используется исследователями при изучении реальных групп в образовательных учреждениях, клиниках, на производстве.

Еще один специфический план, который нередко используется в психологии, называют экспериментом ex-post-facto. Он часто применяется в социологии, педагогике, а также в нейропсихологии и клинической психологии. Стратегия применения этого плана состоит в следующем. Экспериментатор сам не воздействует на испытуемых. В качестве воздействия выступает некоторое реальное событие из их жизни. Экспериментальная группа состоит из «испытуемых», подвергшихся воздействию, а контрольная группа – из людей, не испытавших его. При этом группы по возможности уравниваются на момент своего состояния до воздействия. Затем проводится тестирование зависимой переменной у представителей экспериментальной и контрольной групп. Данные, полученные в результате тестирования, сопоставляются и делается вывод о влиянии воздействия на дальнейшее поведение испытуемых. Тем самым план ex-post-facto имитирует схему эксперимента для двух групп с их уравниванием и тестированием после воздействия. Его схема такова:

Если удается достичь эквивалентности групп, то этот план становится планом истинного эксперимента. Он реализуется во многих современных исследованиях. Например, при изучении посттравматического стресса, когда люди, перенесшие воздействия природной или техногенной катастрофы, или участники боевых действий тестируются на наличие посттравматического синдрома, их результаты сопоставляются с результатами контрольной группы, что позволяет выявить механизмы возникновения подобных реакций. В нейропсихологии травмы головного мозга, поражения определенных структур, рассматриваемые как «экспериментальное воздействие», предоставляют уникальную возможность для выявления локализации психических функций.

Планы истинных экспериментов для одной независимой переменной отличаются от других следующим:

1) использованием стратегий создания эквивалентных групп (рандомизация);

2) наличием как минимум одной экспериментальной и одной контрольной групп;

3) итоговым тестированием и сравнением результатов групп, получавших и не получавших воздействие.

Рассмотрим подробнее некоторые экспериментальные планы для одной независимой переменной.

План для двух рандомизированных групп с тестированием после воздействия. Его схема выглядит так:

Этот план применяют в том случае, если нет возможности или необходимости проводить предварительное тестирование. При равенстве экспериментальной и контрольной групп данный план является наилучшим, поскольку позволяет контролировать большинство источников артефактов. Отсутствие предварительного тестирования исключает как эффект взаимодействия процедуры тестирования и экспериментального задания, так и сам эффект тестирования. План позволяет контролировать влияние состава групп, стихийного выбывания, влияние фона и естественного развития, взаимодействие состава группы с другими факторами.

В рассмотренном примере использовался один уровень воздействия независимой переменной. Если же она имеет несколько уровней, то количество экспериментальных групп увеличивается до числа уровней независимой переменной.

План для двух рандомизированных групп с предварительным и итоговым тестированием. Схема плана выглядит следующим образом:

R O1 Х O2

Этот план применяется в том случае, если существуют сомнения в результатах рандомизации. Главный источник артефактов – взаимодействие тестирования и экспериментального воздействия. В реальности также приходится сталкиваться с эффектом неодновременности тестирования. Поэтому наилучшим считается проведение тестирования членов экспериментальной и контрольной групп в случайном порядке. Предъявление-непредъявление экспериментального воздействия также лучше проводить в случайном порядке. Д. Кэмпбелл отмечает необходимость контроля «внутригрупповых событий». Данный экспериментальный план хорошо контролирует эффект фона и эффект естественного развития.

При обработке данных обычно используются параметрические критерии t и F (для данных в интервальной шкале). Вычисляют три значения t: 1) между O1 и O2; 2) между O3 и O4; 3) между O2 и O4. Гипотезу о значимости влияния независимой переменной на зависимую можно принять в том случае, если выполняются два условия: 1) различия между O1 и O2 значимы, а между O3 и O4 незначимы и 2) различия между O2 и O4 значимы. Иногда удобнее сравнивать не абсолютные значения, а величины прироста показателей б(1 2) и б (3 4). Эти значения также сравниваются по t-критерию Стьюдента. В случае значимости различий принимается экспериментальная гипотеза о влиянии независимой переменной на зависимую.

План Соломона представляет собой объединение двух предыдущих планов. Для его реализации необходимы две экспериментальные (Э) и две контрольные (К) группы. Его схема выглядит так:

С помощью этого плана можно контролировать эффект взаимодействия предварительного тестирования и эффект экспериментального воздействия. Эффект экспериментального воздействия выявляется при сравнении показателей: O1 и O2; O2 и O4; O5 и O6; O5 и O3. Сравнение O6, O1 и O3 позволяет выявить влияние фактора естественного развития и фоновых воздействий на зависимую переменную.

Теперь рассмотрим план для одной независимой переменной и нескольких групп.

План для трех рандомизированных групп и трех уровней независимой переменной применяется в тех случаях, когда необходимо выявление количественных зависимостей между независимой и зависимой переменными. Его схема выглядит так:

При реализации этого плана каждой группе предъявляется лишь один уровень независимой переменной. При необходимости можно увеличить количество экспериментальных групп в соответствии с количеством уровней независимой переменной. Для обработки данных, полученных с помощью такого экспериментального плана, могут применяться все вышеперечисленные статистические методы.

Факторные экспериментальные планы применяются для проверки сложных гипотез о взаимосвязях между переменными. В факторном эксперименте проверяются, как правило, два типа гипотез: 1) гипотезы о раздельном влиянии каждой из независимых переменных; 2) гипотезы о взаимодействии переменных. Факторный план заключается в том, чтобы все уровни независимых переменных сочетались друг с другом. Число экспериментальных групп при этом равно числу сочетаний.

Факторный план для двух независимых переменных и двух уровней (2 х 2). Это наиболее простой из факторных планов. Его схема выглядит так.



Данный план выявляет эффект воздействия двух независимых переменных на одну зависимую. Экспериментатор сочетает возможные переменные и уровни. Иногда используются четыре независимые рандомизированные экспериментальные группы. Для обработки результатов применяется дисперсионный анализ по Фишеру.

Существуют более сложные версии факторного плана: 3 х 2 и 3 х 3 и т. д. Дополнение каждого уровня независимой переменной увеличивает число экспериментальных групп.

«Латинский квадрат». Является упрощением полного плана для трех независимых переменных, имеющих два и более уровней. Принцип латинского квадрата состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым значительно сокращаются количество групп и экспериментальная выборка в целом.

Например, для трех независимых переменных (L, M, N) с тремя уровнями у каждой (1, 2, 3 и N(A, В, С)) план по методу «латинского квадрата» будет выглядеть так.

В этом случае уровень третьей независимой переменной (А, В, С) встречается в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных. Применение латинских букв А, В, С для обозначения уровней третьей переменной традиционно, поэтому метод и получил название «латинский квадрат».

«Греко-латинский квадрат». Этот план применяется в случае, если необходимо исследовать влияние четырех независимых переменных. Он строится на основе латинского квадрата для трех переменных, при этом к каждой латинской группе плана присоединяется греческая буква, обозначающая уровни четвертой переменной. Схема для плана с четырьмя независимыми переменными, каждая из которых имеет три уровня, будет выглядеть так:

Для обработки данных, полученных в плане «греко-латинский квадрат», применяется метод дисперсионного анализа по Фишеру.

Главная проблема, которую позволяют решить факторные планы, – определение взаимодействия двух и более переменных. Эту задачу невозможно решить, применяя несколько обычных экспериментов с одной независимой переменной. В факторном плане вместо попыток «очистить» экспериментальную ситуацию от дополнительных переменных (с угрозой для внешней валидности) экспериментатор приближает ее к реальности, вводя некоторые дополнительные переменные в разряд независимых. При этом анализ связей между изучаемыми признаками позволяет выявить скрытые структурные факторы, от которых зависят параметры измеряемой переменной.

Надёжности и точности в исследовании, предусмотреть нюансы, за которыми сложно уследить при бытовом «спонтанном экспериментировании». Зачастую, чтобы скорректировать план, экспериментаторы проводят так называемое пилотное, или пробное, исследование, которое можно рассматривать как «черновик» будущего научного эксперимента.

Энциклопедичный YouTube

    1 / 5

    Экспериментальная психология

    Центральный композитный план (Планирование эксперимента DOE)

    Социальная психология. Современный фашизм в эксперименте Джонса "Третья волна"

    Психологическое наполнение признаков Аугустинавичюте-Рейнина. Что показал эксперимент (и не только)

    BBC - Он и Она - Секреты отношений. Часть 1

    Субтитры

Основные вопросы, на которые отвечает экспериментальный план

Экспериментальный план создаётся для того, чтобы ответить на основные вопросы о:

Одним из самых важных вопросов, на которые должен ответить экспериментальный план, - определить, в какой последовательности должно происходить изменение рассматриваемых стимулов (независимых переменных), воздействующих на зависимую переменную . Такое воздействие может варьироваться от простой схемы «A 1 -A 2 », где A 1 - первое значение стимула, A 2 - второе значение стимула, до более сложных, таких, как «A 1 -A 2 -A 1 -A 2 », и т. д. Последовательность предъявления стимулов - очень важный вопрос, напрямую касающийся соблюдения валидности исследования: к примеру, если постоянно предъявлять человеку один и тот же стимул, он может стать менее восприимчив к нему.

Этапы планирования

Планирование включает в себя два этапа :

  1. Содержательное планирование эксперимента:
    • Определение ряда теоретических и экспериментальных положений, образующих теоретическую основу исследования.
    • Формулировка теоретических и экспериментальных гипотез исследования.
    • Выбор необходимого метода эксперимента.
    • Решение вопроса выборки испытуемых:
      • Определение состава выборки.
      • Определение объёма выборки.
      • Определение способа формирования выборки.
  2. Формальное планирование эксперимента:
    • Достижение возможности сравнения результатов.
    • Достижение возможности обсуждения полученных данных.
    • Обеспечение экономичного проведения исследования.

Главной целью формального планирования считается исключение максимально возможного числа причин искажения результатов.

Виды планов

Простые планы

Простые планы , или однофакторные, предусматривают изучение влияния на зависимую переменную только одной независимой переменной. Преимущество таких планов состоит в их эффективности при установлении влияния независимой переменной, а также в лёгкости анализа и интерпретации результатов. Недостаток заключается в невозможности сделать вывод о функциональной зависимости между независимой и зависимой переменными.

Опыты с воспроизводимыми условиями

Планы для многоуровневых экспериментов

Если в экспериментах используется одна независимая переменная, ситуация, когда изучаются только два её значения, считается скорее исключением, чем правилом. В большинстве однофакторных исследований три или более значений независимой переменной, - такие планы часто называют однофакторными многоуровневыми . Такие планы могут использоваться как для исследования нелинейных эффектов (то есть случаев, когда независимая переменная принимает более двух значений), так и для проверки альтернативных гипотез . Преимущество таких планов - в возможности определить вид функциональной зависимости между независимой и зависимой переменными. Недостаток, однако же, заключается в больших временных затратах, а также в необходимости привлечь больше участников.

Факторные планы

Факторные планы подразумевают использование более чем одной независимой переменной. Таких переменных, или факторов , может быть сколько угодно, однако обычно ограничиваются использованием двух, трёх, реже - четырёх .

Факторные планы описываются с помощью системы нумерации, показывающей количество независимых переменных и количество значений (уровней), принимаемых каждой переменной. Например, факторный план 2х3 («два на три») имеет две независимые переменные (факторы), первая из которых принимает два значения («2»), а вторая - три значения («3»); факторный план 3х4х5 имеет соответственно три независимые переменные, принимающие «3», «4» и «5» значений соответственно .

В эксперименте, проводимом по факторному плану 2х2, допустим, один фактор, A, может принимать два значения - A 1 и A 2 , а другой фактор, B, может принимать значения B 1 и B 2 . В течение эксперимента согласно плану 2х2 должно быть проведено четыре опыта:

  1. A 1 B 1
  2. A 1 B 2
  3. A 2 B 1
  4. A 2 B 2

Порядок следования опытов может быть различным в зависимости от целесообразности, определяемой задачами и условиями каждого конкретного эксперимента.

Квазиэкспериментальные планы

Квазиэкспериментальные планы - планы для экспериментов, в которых вследствие неполного контроля за переменными нельзя сделать выводы о существовании причинно-следственной связи . Понятие квазиэкспериментального плана было введено Кэмпбеллом и Стэнли в работе «Experimental and quasi-experimental designs for research» (Cambell, D. T. & Stanley, J. C., ). Это делалось с целью преодоления некоторых проблем, встававших перед психологами, которые желали провести исследование в менее строгой обстановке, чем лабораторная . Квазиэкспериментальные планы часто применяются в прикладной психологии .

Виды квазиэксперементальных планов:

1. Планы эксперимента для неэквивалентных групп

2. Планы дискретных временных серий.

Типы:

1. Эксперимент по плану временных серий

2. План серий временных выборок

3. План серий эквивалентных воздействий

4. План с неэквивалентной контрольной группой

5. Сбалансированные планы.

Планы ex post facto

Исследования, в которых сбор и анализ данных производится после того, как событие уже свершилось, называемые исследованиями ex post facto , многие специалисты относят к квазиэкспериментальным . Такие исследования часто осуществляются в социологии, педагогике , клинической психологии и нейропсихологии . Суть исследования ex post facto состоит в том, что экспериментатор сам не воздействует на испытуемых: в качестве воздействия выступает некоторое реальное событие из их жизни.

В нейропсихологии, к примеру, долгое время (и даже сегодня) исследования основывались на парадигме локализационизма, которая выражается в подходе «локус - функция» и утверждает, что поражения определённых структур позволяют выявить локализацию психических функций - конкретный материальный субстрат , в котором они «находятся», в мозге [см. А. Р. Лурия, «Поражения мозга и мозговая локализация высших функций» ; подобные исследования можно отнести к исследованиям ex post facto .

При планировании исследования ex post facto имитируется схема строгого эксперимента с уравниванием или рандомизацией групп и тестированием после воздействия .

Планы экспериментов с малым N

Планы с малым N также называют «планами с одним субъектом », так как индивидуально рассматривается поведение каждого испытуемого. Одной из главных причин использования экспериментов с малым N считается невозможность в некоторых случаях применить результаты, полученные из обобщений на больших группах людей, ни к одному из участников индивидуально (что, таким образом, приводит к нарушению индивидуальной валидности) .

Корреляционное исследование - исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи (корреляции) между несколькими (двумя или более) переменными. От квазиэкспериментального план такого исследования отличается тем, что в нём отсутствует управляемое воздействие на объект исследования .

В корреляционном исследовании учёный выдвигает гипотезу о наличии статистической связи между несколькими психическими свойствами индивида или между определёнными внешними уровнями и психическими состояниями, при этом предположения о причинной зависимости не обсуждаются . Испытуемые должны быть в эквивалентных неизменных условиях. В общем виде план такого исследования можно описать как PxO («испытуемые» x «измерения») .

Виды корреляционных исследований

  • Сравнение двух групп
  • Одномерное исследование
  • Корреляционное исследование попарно эквивалентных групп
  • Многомерное корреляционное исследование
  • Структурное корреляционное исследование
  • Лонгитюдное корреляционное исследование *

* Лонгитюдные исследования считаются промежуточным вариантом между квазиэкспериментом и корреляционным исследованием.

1. История возникновения планирования эксперимента

Планирование эксперимента – продукт нашего времени, однако истоки его теряются в глубине веков.

Истоки планирования эксперимента уходят в глубокую древность и связаны с числовой мистикой, пророчествами и суевериями.

Это собственно не планирование физического эксперимента, а планирование числового эксперимента, т.е. расположение чисел так, чтобы выполнялись некоторые строгие условия, например, на равенство сумм по строкам, столбцам и диагоналям квадратной таблицы, клеточки которой заполнены числами натурального ряда.

Такие условия выполняются в магических квадратах, которым, по-видимому, принадлежит первенство в планировании эксперимента.

Согласно одной легенде примерно в 2200 г. до н.э. китайский император Ю выполнял мистические вычисления с помощью магического квадрата, который был изображен на панцире божественной черепахи.

Квадрат императора Ю

Клетки этого квадрата заполнены числами от 1 до 9, и суммы чисел по строкам, столбцам и главным диагоналям равны 15.

В 1514 г. немецкий художник Альбрехт Дюрер изобразил магический квадрат в правом углу своей знаменитой гравюры-аллегории «Меланхолия». Два числа в нижнем горизонтальном ряду A5 и 14) составляют год создания гравюры. В этом состояло своеобразное «приложение» магического квадрата.

Квадрат Дюрера

В течение нескольких веков построение магических квадратов занимало умы индийских, арабских, немецких, французских математиков.

В настоящее время магические квадраты используются при планировании эксперимента в условиях линейного дрейфа, при планировании экономических расчетов и составлении рационов питания, в теории кодирования и т.д.

Построение магических квадратов является задачей комбинаторного анализа, основы которого в его современном понимании заложены Г. Лейбницем. Он не только рассмотрел и решил основные комбинаторные задачи, но и указал на большое практическое применение комбинаторного анализа: к кодированию и декодированию, к играм и статистике, к логике изобретений и логике геометрии, к военному искусству, грамматике, медицине, юриспруденции, технологии и к комбинации наблюдений. Последняя область применения наиболее близка к планированию эксперимента.

Одной из комбинаторных задач, имеющей прямое отношение к планированию эксперимента, занимался известный петербургский математик Л. Эйлер. В 1779 г. он предложил задачу о 36 офицерах как некоторый математический курьез.

Он поставил вопрос, можно ли выбрать 36 офицеров 6 рангов из 6 полков по одному офицеру каждого ранга от каждого полка и расположить их в каре так, чтобы в каждом ряду и в каждой шеренге было бы по одному офицеру каждого ранга и по одному от каждого полка. Задача эквивалентна построению парных ортогональных 6x6 квадратов. Оказалось, что эту задачу решить невозможно. Эйлер высказал предположение, что не существует пары ортогональных квадратов порядка п=1 (mod 4).

Задачей Эйлера, в частности, и латинскими квадратами вообще занимались впоследствии многие математики, однако почти никто из них не задумывался над практическим применением латинских квадратов.

В настоящее время латинские квадраты являются одним из наиболее популярных способов ограничения на рандомизацию при наличии источников неоднородностей дискретного типа в планировании эксперимента. Группировка элементов латинского квадрата, благодаря своим свойствам (каждый элемент появляется один и только один раз в каждой строке и в каждом столбце квадрата), позволяет защитить главные эффекты от влияния источника неоднородностей. Широко используются латинские квадраты и как средство сокращения перебора в комбинаторных задачах.

Возникновение современных статистических методов планирования эксперимента связано с именем Р. Фишера.

С 1918 г. он начал свою известную серию работ на Рочемстедской агробиологической станции в Англии. В 1935 г. появилась его монография «Design of Experiments», давшая название всему направлению.

Среди методов планирования первым был дисперсионный анализ (кстати, Фишеру принадлежит и термин «дисперсия»). Фишер создал основы этого метода, описав полные классификации дисперсионного анализа (однофакторный и многофакторный эксперименты) и неполные классификации дисперсионного анализа без ограничения и с ограничением на рандомизацию. При этом он широко использовал латинские квадраты и блок-схемы. Вместе с Ф. Йетсом он описал их статистические свойства. В 1942 г. А. Кишен рассмотрел планирование по латинским кубам, которое явилось дальнейшим развитием теории латинских квадратов.

Затем Р. Фишер независимо опубликовал сведения об ортогональных гипер-греко-латинских кубах и гипер-кубах. Вскоре после этого 1946–1947 гг.) Р. Рао рассмотрел их комбинаторные свойства. Дальнейшему развитию теории латинских квадратов посвящены работы X. Манна A947–1950 гг.).

Исследования Р. Фишера, проводившиеся в связи с работами по агробиологии, знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йегс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью полного факторного эксперимента является необходимость ставить сразу большое число опытов.

В 1945 г. Д. Финни ввел дробные реплики от факторного эксперимента. Это позволило резко сократить число опытов и открыло дорогу техническим приложениям планирования. Другая возможность сокращения необходимого числа опытов была показана в 1946 г. Р. Плакеттом и Д. Берманом, которые ввели насыщенные факторные планы.

В 1951 г. работой американских ученых Дж. Бокса и К. Уилсона начался новый этап развития планирования эксперимента.

Эта работа подытожила предыдущие. В ней ясно сформулирована и доведена до практических рекомендаций идея последовательного экспериментального определения оптимальных условий проведения процессов с использованием оценки коэффициентов степенных разложений методом наименьших квадратов, движения по градиенту и отыскания интерполяционного полинома (степенного ряда) в области экстремума функции отклика («почти стационарной» области).

В 1954–1955 гг. Дж. Бокс, а затем Дж. Бокс и П. Юл показали, что планирование эксперимента можно использовать при исследовании физико-химических механизмов процессов, если априори высказаны одна или несколько возможных гипотез. Здесь планирование эксперимента пересекалось с исследованиями по химической кинетике. Интересно отметить, что кинетику можно рассматривать как метод описания процесса с помощью дифференциальных уравнений, традиции которого восходят к И. Ньютону. Описание процесса дифференциальными уравнениями, называемое детерминистическим, нередко противопоставляется статистическим моделям.

Бокс и Дж. Хантер сформулировали принцип ротатабельности для описания «почти стационарной» области, развивающейся в настоящее время в важную ветвь теории планирования эксперимента. В той же работе показана возможность планирования с разбиением на ортогональные блоки, указанная ранее независимо де Бауном.

Дальнейшим развитием этой идеи было планирование, ортогональное к неконтролируемому временному дрейфу, которое следует рассматривать как важное открытие в экспериментальной технике – значительное увеличение возможностей экспериментатора.


2. Математическое планирование эксперимента в научных исследованиях

2.1 Основные понятия и определения

Под экспериментом будем понимать совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Можно получить хорошо аппроксимирующую математическую модель, если целенаправленно применяется активный эксперимент. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.

Опыт – это отдельная экспериментальная часть.

План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Психологический эксперимент начинается с инструкции, точнее - с установления тех или иных отношений между испытуемым и экспериментатором. Другая задача, которая стоит перед исследователем, это формирование выборки: с кем должен проводиться эксперимент, чтобы результаты его могли считаться достоверными. Финал эксперимента - это обработка его результатов, интерпретация полученных данных и представление их психологической общественности.

Процедуры

подготовительный

1.необходимость решения определенной проблемы, ее осознание, изучение, подбор литературы.

2.формулировка задач

3.определение объекта и предмета исследования

4.формулировка гипотезы

5.подбор методов и методик.

исследовательский

Сбор фактических данных с помощью разных методов. Проводятся различные этапы из серии исследований.

Обработка данных исследования

Количественный и качественный анализ исследования. 1.анализ зафиксированного фактора. 2.установление связи: зафиксированный факт - гипотеза. 3.выделение повторяющихся факторов. Происходит статистическая обработка, составление таблиц, графиков и т.д.

Интерпретация данных. Вывод

1.установление правильности, либо ошибочности гипотезы исследования. 2.соотнесение результатов с существующими концепциями и теориями.

Понятие контроля используется в науке в двух - в определенной мере взаимосвязанных - различных смыслах.

Второй смысл, вкладываемый в слово контроль, относится к исключению действия выбранных исследователем переменных в экспериментах или наблюдениях, проводимых в искусственно созданных условиях, - т. о. «контролируется» их влияние. Устранение вариации контролируемых переменных дает возможность более эффективно оценить влияние др. переменной, наз. независимой, на измеряемую, или зависимую, переменную. Подобное исключение посторонних источников вариации позволяет исследователю снизить неопределенность, сопутствующую естественным условиям, к-рая затемняет картину причинно-следственных отношений, и т. о. получать более точные факты.

Переменную можно контролировать двумя осн. способами. Наиболее простой способ состоит в том, чтобы поддерживать контролируемую переменную неизменной при всех условиях или во всех группах испытуемых; примером может служить устранение вариации испытуемых по полу путем привлечения в качестве испытуемых только мужчин или только женщин. При втором способе допускается нек-рое влияние контролируемой переменной, но при этом предпринимается попытка удержать его на одном уровне при всех условиях или во всех группах испытуемых; соотв. пример - привлечение равного количества мужчин и женщин в каждую из принимающих участие в эксперименте групп.

Контроль критических переменных не всегда прост или даже вообще возможен. Примером здесь может быть астрономия. Разумеется, не представляется возможным манипулировать движением звезд и планет или др. небесных тел, что позволяло бы поставить наблюдения под полный контроль. Тем не менее существует возможность заранее планировать наблюдения, с тем чтобы заранее учесть возникновение определенных естественных событий - в т. н. природных экспериментах (natural experiments) - и тем самым добиться нек-рой степени контроля в наблюдениях.

Транскрипт

1 Министерство образования Российской Федерации ВОСТОЧНОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра Метрология, стандартизация и сертификация ОСНОВЫ ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА Методическое пособие для студентов специальностей «Метрология и метрологическое обеспечение» и «Стандартизация и сертификация (по отраслям пищевой промышленности)» Составитель: Хамханов К.М. УланУдэ, 00г.

2 СОДЕРЖАНИЕ Введение... Основные определения.. Параметры оптимизации.... Требования к параметру оптимизации.. Задачи с несколькими выходными параметрами 3. Обобщенный параметр оптимизации. 3.. Простейшие способы построения обобщенного отклика. 3.. Шкала желательности 3.3. Обобщенная функция желательности.. 4. Факторы Характеристика факторов. 4.. Требования к факторам Выбор уровней варьирования факторов и нулевой точки. 5. Выбор моделей.. 6. Полный факторный эксперимент 6.. Полный факторный эксперимент типа k 6.. Свойства полного факторного эксперимента типа k Расчет коэффициентов регрессии. 7. Дробный факторный эксперимент Минимизация числа опытов Дробная реплика Выбор полуреплик. Генерирующие соотношения и определяющие контрасты 8. Ошибки измерений критериев оптимизации и факторов Рандомизация.. 9. Отсеивающие эксперименты 9.. Априорное ранжирование факторов (психологический эксперимент) 9.. Метод случайного баланса Неполноблочные планы (учет качественных факторов и экспертные оценки) 0. Пример планирования эксперимента Выбор факторов 0.. Проведение эксперимента 0.3. Полный факторный эксперимент 0.4. Поиск оптимума методом крутого восхождения 0.5. Описание области оптимума 0.6. Построение графических зависимостей Приложения.. 88

3 ВВЕДЕНИЕ Традиционные методы исследований связаны с экспериментами, которые требуют больших затрат, сил и средств, т.к. являются «пассивными» основаны на поочередном варьировании отдельных независимых переменных в условиях, когда остальные стремятся сохранить неизменными. Эксперименты, как правило, являются многофакторными и связаны с оптимизацией качества материалов, отысканием оптимальных условий проведения технологических процессов, разработкой наиболее рациональных конструкций оборудования и т.д. Системы, которые служат объектом таких исследований, очень часто являются такими сложными, что не поддаются теоретическому изучению в разумные сроки. Поэтому, несмотря на значительный объем выполненных научноисследовательских работ, изза отсутствия реальной возможности достаточно полно изучить значительное число объектов исследования, как следствие, многие решения принимаются на основании информации, имеющей случайный характер, и поэтому далеки от оптимальных. Исходя из выше изложенного возникает необходимость поиска пути, позволяющего вести исследовательскую работу ускоренными темпами и обеспечивающим принятие решений, близких к оптимальным. Этим путем и явились статистические методы планирования эксперимента, предложенные английским статистиком Рональдом Фишером (конец двадцатых годов). Он впервые показал целесообразность одновременного варьирования всеми факторами в противовес широко распространенному однофакторному эксперименту . В начале шестидесятых годов появилось новое направление в планировании эксперимента, связанное с оптимизацией процессов планирование экстремального эксперимента. Первая работа в этой области была опубликована в 95 г. Боксом и Уилсоном в Англии . Идея БоксаУилсона крайне проста. Экспериментатору предлагается ставить последовательные небольшие серии опытов, в каждой из которых одновременно варьируются по определенным правилам все факторы. Серии организуются таким образом, чтобы после математической обработки предыдущей можно было выбрать условия проведения (т.е. спланировать) следующую серию. Так последовательно, шаг за шагом, достигается область оптимума. Применение планирования эксперимента делает поведение экспериментатора целенаправленным и организованным, существенно способствует повышению производительности труда и надежности полученных результатов. Важным достоинством является его универсальность, пригодность в огромном большинстве областей исследований. В нашей стране планирование эксперимента развивается с 960 г. под руководством В.В.Налимова. Однако даже простая процедура планирования весьма коварна, что обусловлено рядом причин, таких как неверное применение методов планирования, выбор не самого оптимального пути исследования, недостаточность практического опыта, недостаточная математическая подготовленность экспериментатора и т.д. Цель данной работы ознакомление читателей с наиболее часто применяемыми и простыми методами планирования эксперимента, выработка навыков практического применения. Более подробно рассмотрена задача оптимизации процессов.

4 . ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Планирование эксперимента, как и всякий раздел науки, имеет свою терминологию. Для удобства понимания рассмотрим наиболее общие термины. Эксперимент целенаправленное воздействие на объект исследования с целью получения достоверной информации. Большинство научных исследований связано с экспериментом. Он проводится на производстве, в лабораториях, на опытных полях и участках, в клиниках и т.д. Эксперимент может быть физическим, психологическим или модельным. Он может непосредственно проводиться на объекте или на его модели. Модель обычно отличается от объекта масштабом, а иногда природой. Главное требование к модели достаточно точное описание объекта. В последнее время наряду с физическими моделями все большее распространение получают абстрактные математические модели. К слову, планирование эксперимента напрямую связано с разработкой и исследованием математической модели объекта исследования. Планирование эксперимента это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. Здесь существенно следующее: стремление к минимизации общего числа опытов; одновременное варьирование всеми переменными, определяющими процесс, по специальным правилам алгоритмам; использование математического аппарата, формализующего многие действия экспериментатора; выбор четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов. Задачи, для решения которых может использоваться планирование эксперимента, чрезвычайно разнообразны. К ним относятся: поиск оптимальных условий, построение интерполяционных формул, выбор существенных факторов, оценка и уточнение констант теоретических моделей, выбор наиболее приемлемых из некоторого множества гипотез о механизме явлений, исследование диаграмм состав свойство и т.д. Поиск оптимальных условий является одной из наиболее распространенных научнотехнических задач. Они возникают в тот момент, когда установлена возможность проведения процесса и необходимо найти наилучшие (оптимальные) условия его реализации. Такие задачи называются задачами оптимизации. Процесс их решения называется процессом оптимизации или просто оптимизацией. Выбор оптимального состава многокомпонентных смесей и сплавов, повышение производительности действующих установок, повышение качества продукции, снижение затрат на ее получение вот примеры задач оптимизации. Далее следует понятие объект исследования. Для его описания удобно пользоваться представлением о кибернетической системе, которая схематически изображена на рис... Иногда такую схему называют «черным ящиком». Стрелки справа изображают численные характеристики целей исследования. Мы их обозначаем буквой игрек (у) и называем параметрами оптимизации. В литературе встречаются другие названия: критерий оптимизации, целевая функция, выход «черного ящика» и т.д. Для проведения эксперимента необходимо иметь возможность воздействовать на наведение «черного ящика». Все способы такого воздействия мы обозначаем буквой икс (х) и называем факторами. Их называют также входами «черного ящика». 88

5 х y х y х k Рис... При решении задачи будем использовать математические модели исследования. Под математической моделью мы понимаем уравнение, связывающее параметр оптимизации с факторами. Это уравнение в общем виде можно записать так: у = ϕ(х, х,..., х), k где символ ϕ (), как обычно в математике, заменяет слова: «функция от». Такая функция называется функцией отклика. Каждый фактор может принимать в опыте одно из нескольких значений. Эти значения называются уровнями. Для облегчения построения «черного ящика» и эксперимента фактор должен иметь определенное число дискретных уровней. Фиксированный набор уровней факторов определяет одно из возможных состояний «черного ящика». Одновременно это есть условие проведения одного из возможных опытов. Если перебрать все возможные наборы состояний, то получается множество различных состояний «черного ящика». Одновременно это будет число возможных различных опытов. Число возможных опытов определяют по выражению = где число опытов; р число уровней; k число факторов. Реальные объекты обычно обладают огромной сложностью. Так, на первый взгляд, простая система с пятью факторами на пяти уровнях имеет 35 состояний, а для десяти факторов на четырех уровнях их уже свыше миллиона. В этих случаях выполнение всех опытов практически невозможно. Возникает вопрос: сколько и каких опытов нужно включить в эксперимент, чтобы решить поставленную задачу? Здесьто и применяется планирование эксперимента. Выполнение исследований посредством планирования эксперимента требует выполнение некоторых требований. Основными из них являются условия воспроизводимости результатов эксперимента и управляемость эксперимента. Если повторить некоторые опыты через неравные промежутки времени и сравнить результаты, в нашем случае значения параметра оптимизации, то разброс их значений характеризует воспроизводимость результатов. Если он не превышает некоторой заданной величины, то объект удовлетворяет требованию воспроизводимости результатов. Здесь мы будем рассматривать только такие объекты, где это условие выполняется. Планирование эксперимента предполагает активное вмешательство в процесс и возможность выбора в каждом опыте тех уровней факторов, которые представляют интерес. Поэтому такой эксперимент называют активным. Объект, на котором возможен активный эксперимент, называется управляемым. На практике нет абсолютно управляемых объектов, т.к. на них действуют как p k, y m

6 управляемые, так и неуправляемые факторы. Неуправляемые факторы влияют на воспроизводимость эксперимента и является причиной ее нарушения. В этих случаях приходится переходить к другим методам исследования. 88. ПАРАМЕТРЫ ОПТИМИЗАЦИИ Выбор параметров оптимизации (критериев оптимизации) является одним из главных этапов работы на стадии предварительного изучения объекта исследования, т.к. правильная постановка задачи зависит от правильности выбора параметра оптимизации, являющегося функцией цели. Под параметром оптимизации понимают характеристику цели, заданную количественно. Параметр оптимизации является реакцией (откликом) на воздействие факторов, которые определяют поведение выбранной системы. Реальные объекты или процессы, как правило, очень сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. Каждый объект может характеризоваться всей совокупностью параметров, или любым подмножеством этой совокупности, или одним единственным параметром оптимизации. В последнем случае прочие характеристики процесса уже не выступают в качестве параметра оптимизации, а служат ограничениями. Другой путь построение обобщенного параметра оптимизации как некоторой функции от множества исходных... ТРЕБОВАНИЯ К ПАРАМЕТРУ ОПТИМИЗАЦИИ Параметр оптимизации это признак, по которому оптимизируется процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 00%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови вот примеры параметров с дискретной областью определения, ограниченной снизу. Количественная оценка параметра оптимизации на практике не всегда возможна. В таких случаях пользуются приемом, называемым ранжированием. При этом параметрам оптимизации присваиваются оценки ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку. Итак, первое требование: параметр оптимизации должен быть количественным. Второе требование: параметр оптимизации должен выражаться одним числом. Иногда это получается естественно, как регистрация показания прибора. Например, скорость движения машины определяется числом на спидометре. Часто приходится проводить некоторые вычисления. Так бывает при расчете выхода реакции. В химии часто требуется получать продукт с заданным отношением компонентов, например, А:В=3:. Один из возможных вариантов решения подобных задач состоит в том, чтобы выразить отношение одним числом (,5) и в качестве параметра оптимизации пользоваться значением отклонений (или квадратов отклонений) от этого числа. Третье требование, связанное с количественной природой параметра оптимизации однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно значение параметра оптимизации, при этом обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов. Четвертым, наиболее важным требованием, требованием к параметрам оптимизации является его возможность действительно эффективной оценки функционирования системы. Представление об объекте не остается постоянным в ходе исследования. Оно

7 меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпан, начинают интересоваться такими параметрами, как себестоимость, чистота продукта и т.д. Оценка эффективности функционирования системы может осуществляться как для всей системы в целом, так и оценкой эффективности ряда подсистем, составляющих данную систему. Но при этом необходимо учитывать возможность того, что оптимальность каждой из подсистем по своему параметру оптимизации «не исключает возможность гибели системы в целом». Это означает, что попытка добиться оптимума с учетом некоторого локального или промежуточного параметра оптимизации может оказаться неэффективной или даже привести к браку. Пятое требование к параметру оптимизации требование универсальности или полноты. Под универсальностью параметра оптимизации понимают его способность всесторонне охарактеризовать объект. В частности, технологические параметры недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров. Шестое требование: желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляем. Требование физического смысла связано с последующей интерпретацией результатов эксперимента. Не представляет труда объяснить, что значит максимум извлечения, максимум содержания ценного компонента. Эти и подобные им технологические параметры оптимизации имеют ясный физический смысл, но иногда для них может не выполняться, например, требование статистической эффективности. Тогда рекомендуется переходить к преобразованию параметра оптимизации. Преобразование, например типа аrcsn у, может сделать параметр оптимизации статистически эффективными (например, дисперсии становятся однородными), но остается неясным: что же значит достигнуть экстремума этой величины? Второе требование, т.е. простота и легко вычисляемость, также весьма существенны. Для процессов разделения термодинамические параметры оптимизации более универсальны. Однако на практике ими пользуются мало: их расчет довольно труден. Из приведенных двух требований первое является более существенным, потому что часто удается найти идеальную характеристику системы и сравнить ее с реальной характеристикой... ЗАДАЧИ С НЕСКОЛЬКИМИ ВЫХОДНЫМИ ПАРАМЕТРАМИ Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физикомеханические, технологические, экономические, художественноэстетические и другие параметры. Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно. Обычно оптимизируется одна функция, наиболее важная с точки зрения исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого можно воспользоваться корреляционным анализом.

8 При этом между всевозможными парами параметров необходимо вычислить коэффициент парной корреляции, который является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Если обозначить один параметр через у, а другой через у, и число опытов, в которых они будут измеряться, через так, что u=, где u текущий номер опыта, то коэффициент парной корреляции r вычисляется по формуле 88 Здесь r y y y = u= (у y)(y y) u (у y) (y y) u u= u= u u u = и y = u= y средние арифметические соответственно для у и у. Значения коэффициента парной корреляции могут лежать в пределах от до. Если с ростом значения одного параметра возрастает значение другого, у коэффициента будет знак плюс, а если уменьшается, то минус. Чем ближе найденное значение r y y к единице, тем сильнее значение одного параметра зависит от того, какое значение принимает другой, т.е. между такими параметрами существует линейная связь, и при изучении процесса можно рассматривать только один из них. Необходимо помнить, что коэффициент парной корреляции как мера тесноты связи имеет четкий математический смысл только при линейной зависимости между параметрами и в случае их нормального распределения. Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением r, которое приведено в прил. 6. Для пользования этой таблицей нужно знать число степеней свободы f = и выбрать определенный уровень значимости, например, равный 0,05. Такое значение уровня значимости соответствует вероятности верного ответа при проверке гипотезы p = a = 0,05 = 0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы. Если экспериментально найденное значение r больше или равно критическому, то гипотеза о корреляционной линейной связи подтверждается, а если меньше, то нет оснований считать, что имеется тесная линейная связь между параметрами. При высокой значимости коэффициента корреляции любой из двух анализируемых параметров можно исключить из рассмотрения как не содержащий дополнительной информации об объекте исследования. Исключить можно тот параметр, который труднее измерить, или тот, физический смысл которого менее ясен. u= y 3. ОБОБЩЕННЫЙ ПАРАМЕТР ОПТИМИЗАЦИИ Путь к единому параметру оптимизации часто лежит через обобщение. Уже указывалось, что из многих откликов, определяющих объект, трудно выбрать один, самый важный. Если же это возможно, то попадают в ситуацию, описанную в предыдущей главе. В этой главе рассматриваются более сложные ситуации, где необходимо множество откликов обобщать в единый количественный признак. С таким обобщением связан ряд трудностей. Каждый отклик имеет свой физический смысл и свою размерность. Чтобы объединить различные отклики, прежде всего приходится ввести для каждого из них некоторую безразмерную шкалу. Шкала должна быть однотипной для всех объединяемых откликов u.

9 это делает их сравнимыми. Выбор шкалы не простая задача, зависящая от априорной информации об откликах, а также от той точности, с которой определяется обобщенный признак. После построения для каждого отклика безразмерной шкалы, возникает следующая трудность выбор правила комбинирования исходных частных откликов в обобщенный показатель. Единого правила не существует. Здесь можно идти различными путями, и выбор пути неформализован. Рассмотрим несколько способов построения обобщенного показателя. 3.. ПРОСТЕЙШИЕ СПОСОБЫ ПОСТРОЕНИЯ ОБОБЩЕННОГО ОТКЛИКА Пусть исследуемый объект характеризуют n частных откликов у u (u,..., n) = и каждый из этих откликов измеряется в опытах. Тогда у u это значение uго отклика в ом опыте (=,...,). Каждый из откликов у u имеет свой физический смысл и, чаще всего, разную размерность. Введем простейшее преобразование: набор данных для каждого поставим в соответствие с самым простым стандартным аналогом шкалой, на которой имеется только два значения: 0 брак, неудовлетворительное качество, годный продукт, удовлетворительное качество. Стандартизовав таким образом шкалу частных откликов приступаем ко второму этапу их обобщению. В ситуации, когда каждый преобразованный частный отклик принимает только два значения 0 и, желательно чтобы и обобщенный отклик принимал одно из этих двух возможных значений, причем так, чтобы значение имело место, если все частные отклики в этом опыте приняли значение. А если хотя бы один из откликов обратился в 0, то и обобщенный отклик будет нулем. При таких рассуждениях для построения обобщенного отклика удобно воспользоваться формулой где Y обобщенный отклик в Iом опыте; n u= Y = n n y u u= y y,..., y,. произведение частных откликов n Корень введен для того, чтобы связать эту формулу с другой, более сложной, которая будет рассмотрена далее. В данном случае ничего не изменится, если написать n Y = y u. Недостаток этого подхода его грубость и жесткость. Рассмотрим другой способ получения обобщенного отклика, который может применяться в тех случаях, когда для каждого из частных откликов известен «идеал», к которому нужно стремиться. Существует много способов введения метрики, задающей «близость к идеалу». Здесь понятие «ввести метрику» значит указать правило определения расстояния между любыми парами объектов из интересующего нас множества. u= Дополним предыдущее обозначение еще одним:, у uо у u наилучшее («идеальное») значение uго отклика. Тогда уu у uо можно рассматривать как некоторую меру близости к идеалу. Однако использовать разность при построении обобщенного отклика невозможно по двум причинам. Она имеет размерность соответствующего отклика, а у каждого из откликов может быть своя размерность, что препятствует их объединению. Отрицательный или

10 положительный знак разности также создает неудобство. Чтобы перейти к безразмерным значениям, достаточно разность поделить на желаемое значение: 88 у u у у Если в некотором опыте все частные отклики совпадут с идеалом, то Y станет равным нулю. Это и есть то значение, к которому нужно стремиться. Чем ближе нулю, тем лучше. Здесь необходимо условиться о том, что считать нижней границей, если верхняя равна нулю. Среди недостатков такой оценки выделяется нивелировка частных откликов. Все они входят в обобщенный отклик на равных правах. На практике же различные показатели бывают далеко неравноправны. Устранить этот недостаток можно введением некоторого веса а u причем u u= a = и > 0 a. u Y uо у uо u a u u= уuо = Чтобы проранжировать отклики по степени важности и найти соответствующие веса, можно воспользоваться экспертными оценками. Мы рассмотрели простейшие способы построения обобщенного показателя. Для перехода и более сложным способам нужно научиться фиксировать более тонкие различия на шкале преобразования откликов. Здесь в основном приходится опираться на опыт экспериментатора. Но, чтобы этот опыт разумно употребить в рамках формальных процедур, его тоже нужно формализовать. Наиболее естественный путь такой формализации введение системы предпочтений экспериментатора на множестве значений каждого частного отклика, получение стандартной шкалы и затем обобщение результатов. Пользуясь системой предпочтений можно получить более содержательную шкалу вместо шкалы классификации с двумя классами. Пример построения такой шкалы рассмотрен в следующем подразделе.. у uо 3.. ШКАЛА ЖЕЛАТЕЛЬНОСТИ Одним из наиболее удобных способов построения обобщенного отклика является обобщенная функция желательности Харрингтона. В основе построения этой обобщенной функции лежит идея преобразования натуральных значений частных откликов в безразмерную шкалу желательности или предпочтительности. Шкала желательности относится к психофизическим шкалам. Ее назначение установление соответствия между физическими и психологическими параметрами. Здесь под физическими параметрами понимаются всевозможные отклики, характеризующие функционирование исследуемого объекта. Среди них могут быть эстетические и даже статистические параметры, а под психологическими параметрами понимаются чисто субъективные оценки экспериментатора желательности того или иного значения отклика. Чтобы получить шкалу желательности, удобно пользоваться готовыми таблицами соответствии между отношениями предпочтения в эмпирической и числовой системах (табл. 3..). Таблица 3. Стандартные отметки на шкале желательности Желательность Отметки на шкале желательности Очень хорошо,000,80,

11 Хорошо 0,800,63 Удовлетворительно 0,630,37 Плохо 0,370,0 Очень плохо 0,00,00 В табл. 3.. представлены числа, соответствующие некоторым точкам кривой (рис. 3.), e y которая задается уравнением d = e или d = exp[ exp(y)], где ехр принятое обозначение экспоненты. d Функция желательности 0, Рис. 3.. На оси ординат нанесены значения желательности, изменяющиеся от 0 до. По оси абсцисс указаны значения отклика, записанные в условном масштабе. За начало отсчета 0 по этой оси выбрано значение, соответствующее желательности 0,37. Выбор именно этой точки связано с тем, что она является точкой перегиба кривой, что в свою очередь создает определенные удобства при вычислениях. Кривую желательности обычно используют как номограмму. Пример. Пусть среди откликов будет выход реакции у, естественные границы которого заключены между 0% и 00%. Предположим, что 00% соответствует на шкале желательности единице, а 0% нулю, тогда на оси абсцисс получаем две точки: 0 и 00 (рис. 3.). Выбор других точек зависит от ряда обстоятельства, таких, как сложившаяся в начальный момент ситуация, требования к результату, возможности экспериментатора. В данном случае область хороших результатов (0,80 0,63 по шкале желательности) заключены в границы 5055%. 50% дает нижнюю границу. Пример. Другая картина получается, когда речь идет о синтезе нового вещества, которого до сих пор не удавалось получать в количествах, достаточных для идентификации. При выходе менее % нет способа идентифицировать продукт. Любой выход выше 0% превосходен (рис.3.). Здесь выход продукции обозначен через у. В наших примерах рассмотрены одинаковые отклики выхода реакции с границами измерения от 0% до 00%. Однако, это не всегда бывает так. Стоит включить такие отклики, как качество материала, и границы станут неопределенными. В этих случаях устанавливаются границы допустимых значений для частных откликов, причем ограничения могут быть односторонними в виде y y у y. Здесь надо иметь ввиду то, что у у,% у,% у u mn и двусторонними в виде mn u max ymn соответствует отметке на шкале желательности

12 d u = 0,37, а значение max исследователя. y устанавливается на основании опыта и ситуации 3.3. ОБОБЩЕННАЯ ФУНКЦИЯ ЖЕЛАТЕЛЬНОСТИ После выбора шкалы желательности и преобразования частных откликов в частные функции желательности приступают к построению обобщенной функции желательности. Обобщают по формуле n D = n d u u= где D обобщенная желательность; d u частные желательности. Способ задания обобщенной функции желательности таков, что если хотя бы одна желательность d u = 0, то обобщенная функция будет равна нулю. С другой стороны D= только тогда, когда d u =. Обобщенная функция весьма чувствительна к малым значениям частных желательностей. Пример: при установлении пригодности материала с данным набором свойств для использования его в заданных условиях если хотя бы один частный отклик не удовлетворяет требованиям, то материал считается непригодным. Например, если при определенных температурах материал становится хрупким и разрушается, то как бы ни были хороши другие свойства, этот материал не может быть применим по назначению. Способ задания базовых отметок шкалы желательности, представленный в табл.3., один и тот же как и для частных, так и для обобщенных желательностей. Обобщенная функция желательности является некоторым абстрактным построением, но она обладает такими важными свойствами, как адекватность, статистическая чувствительность, эффективность, причем эти свойства не ниже, чем таковые для любого технологического показателя, им соответствующего. Обобщенная функция желательности является количественным, однозначным, единым и универсальным показателем качества исследуемого объекта и обладая такими свойствами, как адекватность, эффективность, статистическая чувствительность, и поэтому может использоваться в качестве критерия оптимизации. 4. ФАКТОРЫ После выбора объекта исследования и параметра оптимизации нужно рассмотреть все факторы, которые могут влиять на процесс. Если какойлибо существенный фактор окажется неучтенным и принимал произвольные значения, не контролируемые экспериментатором, то это значительно увеличит ошибку опыта. При поддержании этого фактора на определенном уровне может быть получено ложное представление об оптимуме, т.к. нет гарантии, что полученный уровень является оптимальным. С другой стороны большое число факторов увеличивает число опытов и размерность факторного пространства. В разделе указано, что число опытов равно p k, где р число уровней, а k число факторов. Встает вопрос о сокращении числа опытов. Рекомендации о решении этой проблемы приведены в разделе 7. Итак, выбор факторов является весьма существенным, т.к. от этого зависит успех оптимизации. 4.. ХАРАКТЕРИСТИКА ФАКТОРОВ, 88

13 Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение и влияющая на объект исследования. Факторы должны иметь область определения, внутри которой задаются его конкретные значения. Область определения может быть непрерывной или дискретной. При планировании эксперимента значения факторов принимаются дискретными, что связано с уровнями факторов. В практических задачах области определения факторов имеют ограничения, которые носят либо принципиальный, либо технический характер. Факторы разделяются на количественные и качественные. К количественным относятся те факторы, которые можно измерять, взвешивать и т.д. Качественные факторы это различные вещества, технологические способы, приборы, исполнители и т.п. Хотя к качественным факторам не соответствует числовая шкала, но при планировании эксперимента к ним применяют условную порядковую шкалу в соответствии с уровнями, т.е. производится кодирование. Порядок уровней здесь произволен, но после кодирования он фиксируется. 4.. ТРЕБОВАНИЯ К ФАКТОРАМ Факторы должны быть управляемыми, это значит, что выбранное нужное значение фактора можно поддерживать постоянным в течение всего опыта. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора. Например, экспериментальная установка смонтирована на открытой площадке. Здесь температурой воздуха мы не можем управлять, ее можно только контролировать, и потому при выполнении опытов температуру, как фактор, мы не можем учитывать. Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения. Такое определение называется операциональным. Так, если фактором является давление в некотором аппарате, то совершенно необходимо указать, в какой точке и с помощью какого прибора оно измеряется и как оно устанавливается. Введение операционального определения обеспечивает однозначное понимание фактора. Точность замеров факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. В длительных процессах, измеряемых многими часами, минуты можно не учитывать, а в быстрых процессах приходится учитывать доли секунды. Исследование существенно усложняется, если фактор измеряется с большой ошибкой или значения факторов трудно поддерживать на выбранном уровне (уровень фактора «плывет»), то приходится применять специальные методы исследования, например, конфлюэнтный анализ . Факторы должны быть однозначны. Трудно управлять фактором, который является функцией других факторов. Но в планировании могут участвовать другие факторы, такие, как соотношения между компонентами, их логарифмы и т.п. Необходимость введения сложных факторов возникает при желании представить динамические особенности объекта в статической форме. Например, требуется найти оптимальный режим подъема температуры в реакторе. Если относительно температуры известно, что она должна нарастать линейно, то в качестве фактора вместо функции (в данном случае линейной) можно использовать тангенс угла наклона, т.е. градиент. При планировании эксперимента одновременно изменяют несколько факторов, поэтому необходимо знать требования к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны.

14 Несовместимость факторов наблюдается на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений разбиение на подобласти и решение двух отдельных задач. При планировании эксперимента важна независимость факторов, т.е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент ВЫБОР УРОВНЕЙ ВАРЬИРОВАНИЯ ФАКТОРОВ И ОСНОВНОГО УРОВНЯ Фактор считается заданным, если указаны его название и область определения. В выбранной области определения он может иметь несколько значений, которые соответствуют числу его различных состояний. Выбранные для эксперимента количественные или качественные состояния фактора носят название уровней фактора. В планировании эксперимента значения факторов, соответствующие определенным уровням их варьирования, выражают в кодированных величинах. Под интервалом варьирования фактора подразумевается разность между двумя его значениями, принятая за единицу при кодировании. При выборе области определения факторов особое внимание уделяют на выбор нулевой точки, или нулевого (основного) уровня. Выбор нулевой точки эквивалентен определению исходного состояния объекта исследования. Оптимизация связана с улучшением состояния объекта по сравнению с состоянием в нулевой точке. Поэтому желательно, чтобы данная точка была в области оптимума или как можно ближе к ней, тогда ускоряется поиск оптимальных решений. Если проведению эксперимента предшествовали другие исследования по рассматриваемому вопросу, то за нулевую принимается такая точка, которой соответствует наилучшее значение параметра оптимизации, установленного в результате формализации априорной информации. В этом случае нулевыми уровнями факторов являются те значения последних, сочетания которых соответствуют координатам нулевой точки. Часто при постановке задачи область определения факторов бывает заданной, являясь локализованной областью факторного пространства. Тогда центр этой области принимается за нулевую точку. Предположим, в некоторой задаче фактор (температура) мог изменяться от 40 до 80 о С. Естественно, за нулевой уровень было принято среднее значение фактора, соответствующее 60 о С. После установления нулевой точки выбирают интервалы варьирования факторов. Это связано с определением таких значений факторов, которые в кодированных величинах соответствуют и. Интервалы варьирования выбирают с учетом того, что значения факторов, соответствующие уровням и, должны быть достаточно отличимы от значения, соответствующему нулевому уровню. Поэтому во всех случаях величина интервала варьирования должна быть больше удвоенной квадратичной ошибки фиксирования данного фактора. С другой стороны, чрезмерное увеличение величины интервалов варьирования нежелательно, т.к. это может привести к снижению эффективности поиска оптимума. А очень малый интервал варьирования уменьшает область эксперимента, что замедляет поиск оптимума. При выборе интервала варьирования целесообразно учитывать, если это возможно, число уровней варьирования факторов в области эксперимента. От числа уровней зависят объем эксперимента и эффективность оптимизации. В общем виде зависимость числа опытов от числа уровней факторов имеет вид где число опытов; р число уровней факторов; k число факторов. k = p,

15 Минимальное число уровней, обычно применяемое на первой стадии работы, равно. Это верхний и нижний уровни, обозначаемые в кодированных координатах через и. Варьирование факторов на двух уровнях используется в отсеивающих экспериментах, на стадии движения в область оптимума и при описании объекта исследования линейными моделями. Но такое число уровней недостаточно для построения моделей второго порядка (ведь фактор принимает только два значения, а через две точки можно провести множество линий различной кривизны). С увеличением числа уровней повышается чувствительность эксперимента, но одновременно возрастает число опытов. При построении моделей второго порядка необходимы 3, 4 или 5 уровней, причем здесь наличие нечетных уровней указывает на проведение опытов в нулевых (основных) уровнях. В каждом отдельном случае число уровней выбирают с учетом условий задачи и предполагаемых методов планирования эксперимента. Здесь необходимо учитывать наличие качественных и дискретных факторов. В экспериментах, связанных с построением линейных моделей, наличие этих факторов, как правило, не вызывают дополнительных трудностей. При планировании второго порядка качественные факторы не применимы, т.к. они не имеют ясного физического смысла для нулевого уровня. Для дискретных факторов часто применяют преобразование измерительных шкал, чтобы обеспечить фиксацию значений факторов на всех уровнях. 5. ВЫБОР МОДЕЛЕЙ Как уже указывалось в разделе, под моделью понимается функция отклика вида у = f (х, х,..., х k). Выбрать модель значит выбрать вид этой функции, записать ее уравнение. Тогда останется спланировать и провести эксперимент для оценки численных значений констант (коэффициентов) этого уравнения. Наглядное, удобное воспринимаемое представление о функции отклика дает ее геометрический аналог поверхность отклика. В случае многих факторов геометрическая наглядность теряется, т.к. переходит в абстрактное многомерное пространство, где у большинства исследователей нет навыка ориентирования. Приходится переходить на язык алгебры. Потому рассмотрим простые примеры случаи с двумя факторами. Пространство, в котором строится поверхность отклика, называется факторным пространством. Оно задается координатными осями, по которым откладываются значения факторов и параметра оптимизации (рис. 5.). У Х Х Рис. 5.. Для двух факторов можно не переходить к трехмерному пространству, а ограничиться плоскостью. Для этого достаточно произвести сечения поверхности плоскостями, параллельными плоскости х ох (рис. 5.) и полученные в сечениях линии спроектировать на эту плоскость. Здесь каждая линия соответствует постоянному значению параметра

16 оптимизации. Такая линия называется линией равного отклика. Х Х 88 Рис. 5.. Получив некоторое представление о модели, рассмотрим требования к ним. Главное требование к модели это способность предсказывать направление дальнейших опытов, причем предсказывать с требуемой точностью. Это значит, что предсказанное с помощью модели значение отклика не отличается от фактического больше, чем на некоторую заранее заданную величину. Модель, отвечающая этому требованию, называется адекватной. Проверка выполнимости этого требования называется проверкой адекватности модели и она выполняется при помощи специальных статистических методов, которые будут рассмотрены позже. Следующим требованием является простота модели. Но простота вещь относительная, ее сначала надо сформулировать. При планировании эксперимента принимается, что простыми являются алгебраические полиномы. Наиболее часто применяются приведенные ниже полиномы. Полином первой степени: у = в о k в x Полином второй степени: у = в о k k k в j x x в x вj x x j Полиномы третьей степени: у = в k о k k в x вj x x j вj x x j вjj x x j k в x 3. j k k в x Здесь в этих уравнениях: у значения критерия; в линейные коэффициенты; в j коэффициенты двойного взаимодействия; х кодированные значения факторов. Эксперименты при планировании эксперимента нужны для определения численных значений коэффициентов. Чем больше коэффициентов, тем больше нужно опытов. А мы стремимся сократить их число. Следовательно, нужно найти такой полином, который содержит как можно меньше коэффициентов, но удовлетворяет требованиям, предъявляемым к модели. Полиномы первой степени имеют наименьшее число коэффициентов, кроме этого они.

17 позволяют предсказывать направление наискорейшего улучшения параметра оптимизации. Но полиномы первой степени не эффективны в области близкой к оптимуму. Поэтому при планировании эксперимента на первой стадии исследовании используют полиномы первой степени, и когда они станут неэффективными, переходят к полиномам более высоких степеней. 6. ПОЛНЫЙ ФАКТОРНЫЙ ЭКСПЕРИМЕНТ Работу по планированию эксперимента начинают со сбора априорной информации. Анализ этой информации позволяет получить представление о параметре оптимизации, о факторах, о наилучших условиях ведения исследования, о характере поверхности отклика и т.д. Априорную информацию можно получить из литературных источников, из опроса специалистов, путем выполнения однофакторных экспериментов. Последние, к сожалению, не всегда возможно осуществить, т.к. возможность их осуществления ограничена стоимостью опытов, их длительностью. На основе анализа априорной информации делается выбор экспериментальной области факторного пространства, который заключается в выборе основного (нулевого) уровня и интервалов варьирования факторов. Основной уровень является исходной точкой для построения плана эксперимента, а интервалы варьирования определяют расстояния по осям координат от верхнего и нижнего уровней до основного уровня. При планировании эксперимента значения факторов кодируются путем линейного преобразования координат факторного пространства с переносом начала координат в нулевую точку и выбором масштабов по осям в единицах интервалов варьирования факторов. Используют здесь соотношение x c c ε o =, где х кодированное значение фактора (безразмерная величина); c натуральные значения фактора (соответственно текущее значение и на c o нулевом уровне); ε натуральное значение интервала варьирования факторов (С). Получаются значения факторов, равные (верхний уровень) и (нижний уровень). Расположение экспериментальных точек в факторном пространстве для полного факторного эксперимента при k= и k=3 показана на рис. 6.. Как видим, точки плана задаются координатами вершин квадрата, а точки плана 3 координатами вершин куба. По аналогичному принципу располагаются экспериментальные точки при k>3. С Х С Х C С С а) k= в) k=3

18 Рис ПОЛНЫЙ ФАКТОРНЫЙ ЭКСПЕРИМЕНТ ТИПА k Первый этап планирования эксперимента для получения линейной модели основан на варьировании на двух уровнях . В этом случае, при известном числе факторов, можно найти число опытов, необходимое для реализации всех возможных сочетаний уровней факторов. Формула для расчета числа опытов приводилась в разделе и в этом случае выглядит = k. Эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом (ПФЭ). Если число уровней факторов равно двум, то имеем ПФЭ типа k. Условия эксперимента удобно записывать в виде таблицы, которую называют матрицей планирования эксперимента. Матрица планирования эксперимента Таблица 6. Номер опыта х х у 3 4 у у у 3 у 4 Матрица планирования для двух факторов приведена на табл. 6.. При заполнении матрицы планирования значения уровней факторов, в целях упрощения, обозначают соответствующими знаками, а цифру опускают. С учетом взаимодействия факторов х и х таблицу 6. можно переписать следующим образом: Матрица планирования Таблица 6. Номер опыта 3 4 х х х х у у у у 3 у 4 Каждый столбец в матрице планирования называют векторстолбцом, а каждую строку векторстрокой. Таким образом, в табл. 6.. мы имеем два векторастолбца независимых переменных и один векторстолбец параметра оптимизации. То, что записано в алгебраической форме, можно изобразить графически. В области определения факторов находится точка, соответствующая основному уровню, и проводят через нее новые оси координат, параллельные осям натуральных значений факторов. Далее выбирают масштабы по новым осям так, чтобы интервал варьирования для каждого фактора равнялся единице. Тогда условия проведения опытов будут соответствовать вершинам квадрата, при k=, и вершинам куба, при k=3. Центрами этих фигур является основной уровень, а каждая сторона равна двум интервалам (рис. 6.). Номера вершин квадрата и куба соответствуют номерам опытов в матрице планирования. Площадь, ограниченная этими фигурами, называется областью эксперимента. По аналогичному принципу располагаются экспериментальные точки при k>3. 88

19 Расположение точек в факторном пространстве для ПФЭ при k= и k=3 С Х С Х C C С С а) k= в) k=3 Рис. 6.. Если для двух факторов все возможные комбинации уровней легко найти перебором, то с ростом числа факторов возникает необходимость в некотором приеме построения матриц. Обычно используются три приема, основанные на переходе от матриц меньшей размерности к матрицам большей размерности. Рассмотрим первый прием. При добавлении нового фактора каждая комбинация уровней исходного фактора встречается дважды, в сочетании с верхним и нижним уровнями нового фактора. Отсюда естественно появляется прием: записать исходный план для одного уровня нового фактора, а затем повторить его для другого уровня. Этот прием можно применить для матриц любой размерности. Во втором приеме вводится правило перемножения столбцов матрицы. При построчном перемножении уровней исходной матрицы получаем дополнительный столбец произведения х х, далее повторим исходный план, а у столбца произведений знаки поменяем на обратный. Этот прием применим для построения матриц любой размерности, однако он сложнее, чем первый. Третий прием основан на чередовании знаков. В первом столбце знаки меняются поочередно, во втором столбце они чередуются через два раза, в третьем через четыре, в четвертом через восемь и т.д. по степеням двойки. Пример построения матриц планирования р 3 см. табл. 6.. Таблица 6.3 Матрица планирования эксперимента 3 Номер опыта 3 4 х х х 3 у у у у 3 у 4

20 у 5 у 6 у 7 у СВОЙСТВА ПОЛНОГО ФАКТОРНОГО ЭКСПЕРИМЕНТА ТИПА k Полный факторный эксперимент относится к числу планов, которые являются наиболее эффективными при построении линейных моделей. Эффективность, иначе оптимальность, полного факторного эксперимента достигается за счет ниже перечисленных его свойств. Два свойства следуют непосредственно из построения матрицы. Первое из них симметричность относительно центра эксперимента формулируется следующим образом: алгебраическая сумма элементов векторастолбца каждого фактора равна нулю, или j= x j = 0, где =, k номер фактора, число опытов. Второе свойство так называемое условие нормировки формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или j= Это следствие того, что значения факторов в матрице задаются и. Мы рассмотрели свойства отдельных столбцов матрицы планирования. Рассмотрим свойства совокупности столбцов. Сумма почленных произведений любых двух векторстолбцов матрицы равна нулю, или х j uj = 0 j= x j = x при u, а также, u = 0,..., k. Это важное свойство называется ортогональностью матрицы планирования. Последнее, четвертое свойство называется ротатабельностью, т.е. точки в матрице планирования подбираются так, что точность предсказаний значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления. Выполнение этих условий обеспечивает минимальную дисперсию коэффициентов регрессии, но и равенство дисперсии. Это облегчает статистический анализ результатов эксперимента РАСЧЕТ КОЭФФИЦИЕНТОВ РЕГРЕССИИ Построив матрицу планирования осуществляют эксперимент. Получив экспериментальные данные рассчитывают значения коэффициентов регрессии. Значение свободного члена (в о) берут как среднее арифметическое всех значений параметра оптимизации в матрице: где в о у u. =, u y значения параметра оптимизации в uм опыте; число опытов в матрице.

21 Линейные коэффициенты регрессии рассчитывают по формуле в x y u u = = xu где хu кодированное значение фактора х в uм опыте. Коэффициенты регрессии, характеризующие парное взаимодействие факторов, находят по формуле в x x y u ju u j = = xu Рассмотрим пример расчета коэффициентов регрессии для планирования, матрица планирования которой приведена в табл. 6. y y y3 y4 в o = ; 4 y y y3 y4 в = ; 4 y y y3 y4 в = ; 4 y y y3 y4 в =. 4 Рассмотрим уравнение регрессии для k=3. y = в0 вх вх в3х3 вхх в3хх3 в 3 х х3 в3 хх х3, где в0 свободный член; в, в в линейные коэффициенты;, 3, в3, в3 в коэффициенты двойного взаимодействия; в 3 коэффициент тройного взаимодействия. Полное число всех возможных коэффициентов регрессии, включая в 0, линейные коэффициенты и коэффициенты взаимодействий всех порядков, равно числу опытов полного факторного эксперимента. Чтобы найти число взаимодействий некоторого порядка, можно воспользоваться формулой числа сочетаний С m k x x k! m!(k m)! u u =, где k число факторов; m число элементов во взаимодействии. Так, для плана 4 число парных взаимодействий равно шести 4! С 4 = = 6.!! Отсюда видно, что с ростом числа факторов число возможных взаимодействий быстро y x u ju, y u.


УДК 58.5: 58.48 В.С. Хорошилов СГГА, Новосибирск ОПТИМИЗАЦИЯ ВЫБОРА МЕТОДОВ И СРЕДСТВ ГЕОДЕЗИЧЕСКОГО ОБЕСПЕЧЕНИЯ МОНТАЖА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ Постановка задачи. Геодезическое обеспечение монтажа

Лекция В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент. Суть: исследователь собирает некоторый объем экспериментальной информации:

73 5 ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА ПРИ ПОИСКЕ ОПТИМАЛЬНЫХ УСЛОВИЙ 5.1 Основные понятия и определения Эксперимент занимает центральное место в науке. А применение математических методов планирования эксперимента

Тест по дисциплине «Основы теории эксперимента» 1. Как называется процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью? 1)

ВВОДНАЯ ЛЕКЦИЯ по дисциплине «Планирование и организация эксперимента» 1 Значимость проведения исследований; 2 Сбор данных и оформление результатов эксперимента; 3 Выбор объекта исследований. 1 Значимость

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет

Определение значимости факторов и их взаимодействия в многофакторном эксперименте Р. Алалами, С.С. Торбунов После изучения объекта исследования и его физической сущности возникает ряд представлений о действии

Министерство образования Российской Федерации ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Методические указания к практическим занятиям по дисциплине «Планирование эксперимента» для

Голубев ВО Литвинова ТЕ Реализация алгоритма построения статистической модели объекта по методу Брандона Постановка задачи Статистические модели создают на основании имеющихся экспериментальных данных

Федеральное агентство по образованию Рубцовский индустриальный институт ГОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова» Н.А. Чернецкая ПЛАНИРОВАНИЕ И МАТЕМАТИЧЕСКАЯ ОБРАБОТКА

Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

ЭКСПЕРИМЕНТ: ПЛАНИРОВАНИЕ И МАТЕМАТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ Некоторые методы планирования экспериментов в приложении к горному производству Если информации о рассматриваемом процессе недостаточно

ОДНОФАКТОРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ Цель работы проведение однофакторного регрессионного анализа на основе полиномиальных моделей первого, второго и третьего порядка. Теоретические основы. Под регрессионным

Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ЮгоЗападный государственный университет» Кафедра «Управление качеством, метрологии и сертификации»

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов () Линейная корреляция () () 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

ГЛАВА ДВУХМЕРНЫЙ КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Методы двухмерного корреляционно-регрессионного анализа позволяют определить тесноту и вид зависимостей между парами стереометрических показателей одного

РЕГРЕССИОННЫЙ АНАЛИЗ Пусть у нас есть серии значений двух параметров. Подразумевается, что у одного и того же объекта измерены два параметра. Нам надо выяснить есть ли значимая связь между этими параметрами.

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА ПРИ ВЫПОЛНЕНИИ

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Владимирский государственный университет имени Александра Григорьевича

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Построение полного факторного эксперимента(пфэ) Уравнение (2.2) называется уравнением регрессии, а коэффициенты b 0, b ja, b jl, b jj - коэффициентами регрессии . При первоначальном исследовании объекта

ЛАБОРАТОРНАЯ РАБОТА «ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА» Большое планирование экспериментальных задач в химии и химической технологии формулируются как экстремальные; к ним относятся определение оптимальных условий

Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Исследование операций Определение Операция - мероприятие, направленное на достижение некоторой цели, допускающее несколько возможностей и их управление Определение Исследование операций совокупность математических

1 АГ Дьячков, «Задания по математической статистике» Задание 6 6 Линейный регрессионный анализ 61 Построение регрессионной прямой Пусть экспериментатор, задавая значения неслучайной переменной t, в результате

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

Лекция Большинство исследований проводимых в химической технологии сводятся к решению оптимальных задач. Существует два подхода к решению оптимальных задач: 1. Для решения оптимальных задач необходимо

Регрессионный анализ регрессионный анализ -введение коэффициент корреляции степень связи в вариации двух переменных величин (мера тесноты этой связи) метод регрессии позволяет судить как количественно

Глава 8 Функции и графики Переменные и зависимости между ними. Две величины и называются прямо пропорциональными, если их отношение постоянно, т. е. если =, где постоянное число, не меняющееся с изменением

ИЗУЧЕНИЕ СТАТИСТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА Лабораторная работа 8 Цель работы: 1. Подтверждение случайного, статистического характера процессов радиоактивного распада ядер.. Ознакомление

1 - Тема 1 Элементы теории погрешностей 11 Источники и классификация погрешностей Численное решение любой задачи, как правило, осуществляется приближенно, те с некоторой точностью Это может быть обусловлено

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего образования КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Математическое моделирование

Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) имени И.М. Губкина Кафедра «Стандартизации, сертификации

ПРИМЕНЕНИЕ МЕТОДОВ ПЛАНИРОВАНИЯ И ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ ДЛЯ ОПТИМИЗАЦИИ КАЧЕСТВА МАШИННОГО ОБУЧЕНИЯ ПУТЕМ ВЫБОРА ПАРАМЕТРОВ М.В. Водолазкая, О.Л. Моросин, к.т.н. ФБГОУ ВПО «НИУ «МЭИ», Москва Работа

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 4 ОБОБЩЁННЫЕ КООРДИНАТЫ И СИЛЫ УРАВНЕНИЯ РАВНОВЕСИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ВИРТУАЛЬНЫЙ ДИФФЕРЕНЦИАЛ ПОТЕНЦИАЛЬНЫЕ СИЛЫ Лектор: Батяев Евгений Александрович

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА Статистические методы планирования эксперимента Проблемы построения эксперимента [Часть II, стр. 7-76] Отбор информации не объективен! 1. Результаты наблюдений - это лишь ограниченная

Оптимизация свойств изделий автомобилестроения средствами САПР Щербаков А.Н., Константинов А.Д. Пензенский государственный университет Выбор параметров и характеристик систем, обеспечивающих их функционирование

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет Балаковский институт техники, технологии и управления ПРИМЕНЕНИЕ

1 АГ Дьячков, «Задания по математической статистике» Задание 3 3 Доверительные интервалы 31 Доверительные интервалы параметров нормальной выборки 311 Математическая модель Нормальная выборка x = (x 1,

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЗЕМЛЕУСТРОЙСТВЕ Карпиченко Александр Александрович доцент кафедры почвоведения и земельных информационных систем Литература elib.bsu.by Математические методы в землеустройстве [Электронный

Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

3.. ПОСТРОЕНИЕ ОДНОФАКТОРНЫХ МОДЕЛЕЙ ПРОГНОЗИРОВАНИЯ Пусть в ходе корреляционного анализа прогнозисту удалось определить степень взаимосвязи между двумя случайными факторами и и определить направление

Построение ММ статики технологических объектов При исследовании статики технологических объектов наиболее часто встречаются объекты со следующими типами структурных схем (рис: О с одной входной х и одной

Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Тема 10. Ряды динамики и их применение в анализе социально-экономических явлений. Изменение социально-экономических явлений во времени изучается статистикой методом построения и анализа динамических рядов.

МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1), x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

И. В. Яковлев Материалы по математике MathUs.ru Квадратные уравнения и неравенства с параметрами. Данная статья посвящена вопросам расположения корней квадратного трёхчлена в зависимости от параметра.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Основные понятия кинематики (Лекция 1 в 2015-2016 учебном году) Материальная точка. Система отсчета. Перемещение. Длина пути Кинематика это часть механики, которая изучает движения тел без исследования

Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Лекция 10. Методы измерения тесноты парной корреляционной связи. Часть 1 Признаки могут быть представлены в количественных, порядковых и номинальных шкалах. В зависимости от того, по какой шкале представлены

НЕОБХОДИМЫЕ СВЕДЕНИЯ ПО МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ В лабораторном практикуме вы постоянно будете иметь дело с измерениями физических величин. Необходимо уметь правильно обрабатывать

Контрольная работа выполнена на сайте www.maburo.ru Вариант 4 Задание. Прогнозирование экономических процессов. В таблице приведены данные продаж продовольственных товаров в магазине. Разработать модель

Министерство образования Российской федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» АПРИОРНОЕ РАНЖИРОВАНИЕ

6.2.4. ПОСТРОЕНИЕ ИНТЕРПРЕТИРУЕМЫХ РЕГРЕССИОННЫХ МОДЕЛЕЙ ТЕХНОЛОГИЧЕСКИХ ОБЪЕКТОВ С тех пор как за теорию относительности принялись математики, я ее уже сам больше не понимаю. (А. Эйнштей) Всякую интерпретацию

Поделиться